
JOURNAL OF COMPUTATIONAL PHYSICS 94, 487493 ( 1991) 

Note 

Sturm-Liouville Systems with Potentials 0.5 cos 2nx 

1. INTRODUCTION 

In this note we compare the eigenvalues of the Sturm-Liouville system - 11” = iu 
with those of - u” + ($ cos 2nx)cr = 1-u; n = 1,2, The systems are assumed to be 
on a finite interval, and the eigenfunctions are assumed to have symmetrically 
located discontinuities at d = n/m and d = (m - 1) n/m for m = 3, 4, 5, . . . . satisfying 
symmetric jump conditions. We find that the differences between corresponding 
eigenvalues were quite small and showed a distinct, repetitive pattern after the n th 
eigenvalue. The nth eigenvalues of the two systems show the greatest difference. 
Furthermore, when n = mk for k = 1, 2, 3, . . . . the spectra of the two systems are 
almost identical except at the mk th eigenvalue. We implement an algorithm to 
solve the inverse Sturm-Liouville problem for the two systems to show that this 
mkth eigenvalue characterizes the difference between the two systems. 

The eigenvalues of physical systems have been extensively studied by Andrew 
[ 11, Hochstadt [IO], McNabb [ 141, Paine [ 15, 161, and others as they constitute 
the critical data for solving the associated inverse problem. Our motivation for 
examining the spectra of discontinuous Sturm-Liouville systems is to gain insight 
into the geophysical inverse problem; scientists seek to determine the density profile 
of the earth using eigenfrequency data from seismic waves (see Bolt [2] and Bolt 
and Uhrhammer [3]). A dctailcd discussion on the mathematical aspects of the 
seismological inverse problem is given in Hald [6 -81. 

2. Two STURM-LIOUVILLE SYSTEMS 

We consider the cigenvalues of the systems 

System 1, 

- 11 t. = E.U. 

System 2, 

24” + (0.5 cos 2nx) u = 3.u 

on the interval 0 <x < n satisfying the symmetric boundary conditions 

u(0) = u(n) = 1; u’(0) = u’(7c) = 0 
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with two symmetrically located discontinuities at x= d, =d and x = d, = 71 -d; 
0 < d, < 71/2 satisfying the jump conditions 

u(d, + ) = au(d, - ), u’(d, + ) = ap’u’(d, - ) + hu(d, - ), 

u(d,-)=au(d,f), u’(d,-)=a-‘u’(d,+)-lx@-). 

In our experiment we set the jump constants for the eigenfunction and its derivative 
to be a = 1.5 and h = 0.5, respectively, and the discontinuities to be located at 
d, = 7~15 and d, = 4x15. The differences between the corresponding eigenvalues of 
System 1 and System 2 were less than 0.3 and showed a distinct, repetitive pattern 
after the nth eigenvalue where n = 1, 2, 3, 4, 6, 7, 8, 9. (See Fig. 1.) We also note 
that the n th eigenvalues of the two systems show the greatest difference. For the 
choices n = 5 and n = 10 we found that only a finite number of corresponding eigen- 
values noticeably differ. In particular, the fifth and tenth eigenvalues show the 
greatest disparity. See Fig. 2 for the case n = 5. Data from the case n = 10 is similar, 
where the essential feature (i.e., a sharp downward peak) at eigenvalue 5 appears 
instead at eigenvalue 10. 

To show that the few differing eigenvalues characterize the difference between the 
two systems, we implemented an algorithm to solve the inverse Sturm-Liouville 
problem [ll, 121. The algorithm assumes knowledge of the eigenvalues, jump and 
boundary conditions, and symmetric potential function of a Sturm-Liouville 
system. The eigenvalues from a system with an unknown, symmetric potential are 
given. The inverse problem is to determine this unknown potential. When the algo- 
rithm is implemented, the potential from the known system is perturbed towards 
the desired potential by replacing eigenvalues from the known system with those 
from the unknown system. As a greater number of eigenvalues are replaced, a better 
picture of the desired potential emerges. The algorithm is guaranteed to converge 

EIGENVALUE NUMBER 

FIG. 1. Q=Ow Q=OScos16X. 
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FIG. 2. Q = 0 vs Q = 0.5 cm 10X. 

so long as only a finite number of the corresponding eigenvalues in the known and 
unknown systems differ. This reconstruction algorithm is an extension of one by 
Hald [9] to solve the continuous, inverse Sturm-Liouville problem. 

We chose the system with potential qs0 to be the initial system and that with 
potential q = 0.5 cos 2nx to be the target system. For n = 5, i.e., q(x) = 0.5 cos 10x 
the algorithm gives a potential very close to the zero potential when only the first 
n - 1 = 4 eigenvalues are used. (See Fig. 3.) This result is expected since the first 
four eigenvalues of the systems are very close. After the fifth eigenvalue is passed, 
i.e., n + 1 = 6 eigenvalues are used, the reconstruction yields an excellent 
approximation to the potential q(x) = 0.5 cos 10x. These results can be seen by 

SPATIAL COORDINATE 

FIG. 3. Q = 0.5 cos 10X (5 eigenvalues) 
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SPATIAL COORDINATE 

FIG. 4. Q = 0.5 cm 10X (6 eigenvalues). 

examining the pictures of q(x) or by considering the L,, L, and L, errors. (See 
Figs. 4 and 5 and Tables I-III below.) 

Experiments similar to those for the choice n = 5 were run for the case n = 10. As 
expected the algorithm gives a potential very close to the zero potential when only 
the first n - 1 = 9 eigenvalues are used. After the tenth eigenvalue is passed, i.e., 
n + 1 = 11 or more eigenvalues are used, the reconstruction is an excellent 
approximation to the potential q(x) = 0.5 cos 20x. 

Experiments to study the effect of the discontinuity on the eigenvalues were con- 
ducted when the discontinuity is placed at d= l/m for m = 3,4, 5, . . . The difference 
in the eigenvalues of systems 1 and 2 was calculated. A sharp peak (i.e., large dif- 
ference) can be observed at the nth eigenvalue, and an oscillatory pattern can be 

SPATIAL COORDINATE 

FIG. 5. Q = 0.5 cm 10X (15 eigenvalues) 
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TABLE I 

Eigenvalues of S-L Systems (u = 1.5, h = 0.5, d= n/5) 

eigenvalue q(z) = 0 q(z) = 0.5 cos 10x q(z) = 0.5 cos 201: 

0 0.25453517 0.25089171 0.25362842 

1 1 .a966688 1.8914568 1.8954365 

2 4.7043829 4.7021128 4.7038985 

3 8.1565250 8.1537540 8.1560155 

4 14.594351 14.582115 14.592846 

5 25.542353 25.790359 25.540129 

6 39.235588 39.244831 39.233435 

7 51.254197 51.255970 51.253243 

8 61.607223 61.608499 61.606007 

9 77.279468 77.281955 77.273747 

10 100.54482 100.54766 100.79431 

11 126.55437 126.55567 126.55933 

12 147.80341 147.80379 147.80439 

13 165.05804 165.05838 165.05876 

14 189.96170 189.96250 189.96316 

eig L1 error L2 error L, error 
0 0.999 0.627 0.508 

1 0.999 0.626 0.518 

2 0.999 0.626 0.522 

3 1.000 0.627 0.528 

4 1.009 0.633 0.552 

5 0.0404 0.0273 0.0563 

6 0.0175 0.0136 0.0378 

7 0.0166 0.0140 0.0342 

8 0.0168 0.0130 0.0317 

9 0.0134 0.00963 0.0267 

10 0.00675 0.00563 0.0210 

11 0.00570 0.00491 0.0184 

12 0.00537 0.00505 0.0177 

13 0.00569 0.00480 0.0170 

14 0.00458 0.00384 0.0154 

TABLE II 

Reconstruction of Q = 0.5 cos 10X 
(a = 1.5, h = 0.5, d= rc/5, grid = n/10000) 
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eig L1 error L2 error LO2 error 
0 1.00 0.627 0.502 

1 1.00 0.627 0.505 

2 1.00 0.627 0.506 

3 1.00 0.627 0.506 

4 1.00 0.627 0.509 
5 1.00 0.627 0.514 

6 0.999 0.626 0.518 

7 0.999 0.626 0.520 

8 1.00 0.627 0.522 

9 1.00 0.630 0.534 

10 0.0214 0.0146 0.0348 

11 0.00965 0.00775 0.0249 
12 0.00901 0.00805 0.0230 

13 0.00943 0.00744 0.0215 

14 0.00696 0.00546 0.0186 
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TABLE III 

Reconstruction of Q = 0.5 cos 20X 
(u = 1.5, b =OS, d= n/5, grid = n/10000) 

seen for eigenvalues greater than n. As in the example above, when IZ = m k for 
k = 1, 2, 3, ,.., the eigenvalues of the two systems are close except at the mkth eigen- 
value. Furthermore, results from implementing the numerical algorithm in [ 1 l] can 
be predicted; the algorithm gives a potential very close to the zero potential when 
the first (mk - 1) eigenvalues are used and yields an excellent approximation to the 
potential q(x) = 0.5 cos 2nx when the mkth eigenvalue is used. 

Joyce McLaughlin of Rensselaer Polytechnic Institute has suggested that our 
observations might be explained by examining the asymptotic expansions of the 
eigenvalues. Expansions for the eigenvalues of continuous Sturm-Liouville systems 
have been studied by Borg [4] and Hochstadt [lo]. A general expression for the 
expansion for systems with discontinuous eigenfunctions cannot exist, as shown by 
Hald [IS]. A general technique for some special cases has been developed for the 
single discontinuity case [ 131. We hope that our experimental results will give some 
insight into this area. 
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